30 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 45, NO. 1, FEBRUARY 1998

The Influence of Spatial Variations of
Diffusion Length on Charge Collected
by Diffusion from lon Tracks

Larry D. Edmonds

Abstract—Charge collected by diffusion from ion tracks in the epi layer, but also charge liberated in the heavily doped
a semiconductor substrate may be influenced by the substrate sypstrate below. Charge flow from the substrate to the epi
diffusion length, which is related to recombination losses. A layer is strongly influenced by recombination losses because

nonuniform spatial distribution of recombination centers results s . . .
in a nonuniform diffusion length function. A theoretical analysis (€ carrier lifetime is very short in the heavily doped substrate.

shows that, excluding some extreme cases, charge collection i$Computer simulations have also shown [2] that the minority
insensitive to spatial variations in the diffusion length function, carrier diffusion equation, which contains the minority carrier
so it is possible to define an effective diffusion length having the Giffusion length, provides a rough approximation for charge

property that collected charge can be approximated by assuming . . . .
a uniform diffusion length equal to this effective value. Extreme reaching the epi layer from the substrate as a function of time.

cases that must be excluded are those in which a large number The _traCk density can exceed the dOPing d?nSity even iﬂ a
of recombination centers are confined to a narrow region near heavily doped substrate, but the four-dimensional space-time

the substrate boundary. volume characterized by this condition is sufficiently small
Index Terms—Charge collection, diffusion, diffusion length, ion for this equation to provide a rough approximation. Although
track, recombination. the approximation is rough for charge reaching the epi as

a function of time, simulations show [2] that the minority
carrier diffusion equation is very accurate for calculating total
. . o _(integrated in time from zero to infinity) charge reaching the
T HE SUBJECT considered is charge collection in a siligpj which is added to the charge liberated within the epi
con device by diffusion from an ionizing source whef, produce total collected charge. Simulations show that this
collected charge is “m_'ted_ by recqmblnatlon losses in '_Efg‘ccuracy is very good whether the ion linear energy transfer
substrate. The recombination loss is represented by a finif¢T) js 1 or 40 MeV-crdimg. Charge collection estimates
diffusion length in the diffusion equation. A nonuniformeom sych calculations were also found to fit experimental
spatial distribution of recombination centers (RC’s) results harge collection measurements very accurately [3].
a nonuniform diffusion length function. The specific question ¢ e giffusion equation describes total charge collection
considered is whether collected charge is sensitive or insensioni diodes has been demonstrated both experimentally and
tive to variations of the diffusion length function in the verticab computer simulations in earlier papers as discussed above
coordinate. A theoretical analysis shows that charge collectipénce relevancy of this equation has already been established.

is insensitive to such variations, so, for all but the mo.sfthe present paper considers mathematical approximations for

;)eaSterlarfzv‘i:I?S(terS\,e Itrlos zcr)tsstlrl?; égllii{':;Cigreféegg'r:’%g;fgts'ﬁnIving the diffusion equation to obtain estimates of collected
9 9 property 9 9 arge. This equation is only useful if it simplifies calculations

approximated by assuming a uniform diffusion length equ otherwise, we may as well let a computer simulation solve

to this effectn{e value. : the charge collection problem). A complication is that the
The analysis and conclusions apply to a number of ai:

rangements (e.g., solar cells having reduced lifetimes dueq'gusmn length is not likely to be spatially uniform because

! the ,RC distribution is not likely to be uniform. If it is

displacement damage), but the prototype arrangement assumed . e

for discussion is an ion track which extends into a heavifyc eSSy to account for a nonuniform diffusion length, the
giffusion equation is no longer useful because calculations are

doped substrate below an epitaxial (epi) layer in a large- | imple. The obiecti fth i is t
area silicon epi diode. Computer simulations have shown onger simple. 1he objective of the present paper Is to
ow that, excluding some extreme cases, reasonably accurate

that charge collection includes not only charge liberated : _ , > 7
charge collection estimates can be obtained from the “uniform
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a more difficult analytical calculation (the diffusion equatiort al.[7] concluded that diffusion results in “extended sensitive
with a nonuniform diffusion length) over a broad range adireas” for SEU in complementary metal-oxide—semiconductor
conditions. Therefore, the theory is purely mathematical. USRAM’s. Smithet al. [8] postulated that diffusion may explain
fortunately, this broad range of conditions does not include 8EU cross section features better than drift for small devices
conditions. There are some problem cases in which the unifomith long time constants. A more recent paper [9] concluded
approximation fails badly. Therefore, a second objective is that diffusion theory predictions agree with measured SEU
identify the “problem cases” so that the reader will know wheeross section versus LET curves for many devices, if the
the uniform approximation can be used and when it should AdET is large enough for the cross section to be large enough
be used. Fortunately, these problem cases are so extreme ghathat ion hits at the cross-section perimeter require that
they should rarely, if ever, occur in the real world. charge first be transported by diffusion before reaching the
The analysis will show that charge collection is insensitiveensitive node. On a more academic level, two earlier papers
to spatial variations in the RC distribution, even when the$2], [10] concluded that even when funneling is strong, there
variations are large. To make this statement more precise, sigpstill an interrelationship between drift and diffusion so that
pose two RC distributions have the property that both give tisharge collection is intimately related to diffusion, and it is
same collected charge for an effectively infinitely long trackiecessary to solve the diffusion equation (among other things)
If we now select an arbitrary track, long or short, and compate calculate collected charge.
the two distributions with the same track in both, we will find Another issue worth mentioning is that several of the papers
that, excluding the problem cases, the two distributions algeferenced in the above paragraph [2], [4], [8] include recombi-
give approximately the same collected charge for this tragkation losses in their analytical results, but a spatially uniform
In particular, if we are given some actual RC distribution andiffusion length is always assumed. By arguing that this
then construct a uniform distribution with the density selecteabsumption is fine (i.e., answers are approximately correct even
to give the same collected charge for an infinitely long trackhen the assumption is wrong), the present paper enhances the
as the given distribution, this uniform distribution will alsovalue of some of this earlier work.
approximate the actual distribution, excluding the problem
cases, with regards to charge collection from any track, long
or short. Therefore, the effective value for the diffusion length
that should be used with the uniform approximation is the The motivation behind a set of mathematical arguments,
value that makes the uniform approximation become exact fleading to a set of conclusions, is clearer when it is known in
tracks that are effectively infinitely long. This same effectivadvance what the conclusions will be (i.e., a proof is easier
value can be used with the uniform approximation to obtato follow if we first state the theorem that is to be proven).
reasonably good charge-collection estimates (excluding thkerefore, a preview of the conclusions to follow is given here.
problem cases) for any track length, long or short. The problem considered is the prototype arrangement pre-
Although a prototype arrangement (an ion track extendingously described subject to the following qualifications. The
into a heavily doped substrate below an epi layer in a siRC density is assumed to be uniform in the lateral coordinates
icon epi diode) is selected for visualization and to provideut can be nonuniform in the vertical coordinate. This density
terminology (allowing statements to be expressed in termsisfassumed to be increasing with depth up to some peak value
physical quantities instead of mathematical abstractions), thiesome arbitrary depth and then decreasing with depth, but
analysis to follow is merely a mathematical investigation of the an otherwise arbitrary function of depth. This condition is
diffusion equation and may also apply to some other deviegpected to include most cases of practical interest in which
types and/or materials. However, when considering physiatak RC distribution is created by displacement damage. The
arrangements other than this prototype, it should be notedck must extend from the top of the substrate (or higher,
that there are two separate questions. The first is whether the the track section above the substrate is not relevant to
diffusion equation applies, and the second is, given that ttigs discussion) to some depth below, i.e., we exclude tracks,
diffusion equation does apply, does the uniform approximatiauch as might be produced by proton-induced nuclear reaction
apply. The sections to follow focus on the second questigoroducts, which begin and end in the substrate interior. There
The first question was discussed here only for the prototypeay be a limitation regarding longitudinal track structure,
arrangement. It is up to the reader to find the answer to that this discussion is deferred to the end of this section.
first question for other physical arrangements of interest The track radius is arbitrary. The objective is to determine
the reader. However, some guidance might be found in earlighether the uniform approximation applies and to obtain an
work emphasizing that the diffusion equation may have othestimate of the effective diffusion length to be used in this
applications. For example, Wouters [4] used diffusion theogpproximation.
to predict the performance of some low-voltage radiation We start with the effective diffusion length estimate. This is
detectors. On the subject of single event upsets (SEU), Daithé value that makes the uniform approximation exact when
et al. [5] concluded that multiple-bit SEU in at least som@redicting collected charge from tracks that are infinitely long.
double static random access memory (SRAM) cell structur€me experimental method for finding this value is to measure
from “between-node” strikes is by diffusion. Zoutendgk collected charge [3] from long ion tracks having a nearly
al. [6] postulated that charge collection by remote nodes gonstant LET over most of the track length. The track is
DRAM'’s leading to multiple-bit SEU is by diffusion. Moreaulong enough if significant changes in track length do not

Il. A PREVIEW OF CONCLUSIONS TOFOoLLOW
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significantly change the ratio of collected charge divided by [ll. TERMINOLOGY AND STATEMENT

ion LET. The effective diffusion length is the charge diffusing OF THE MATHEMATICAL PROBLEM

to the epi layer (which is the total collected charge minus the The assumed physical arrangement consists of a device
charge liberated in the epi layer) divided by the linear trackhsirate containing an ion track which extends from the upper
density (charge per unit length which is calculated from thg nstrate surface to a depth equal to the track length. The
ion LET). . o . .. .upper substrate boundary is assumed to be an infinite plane
~ To determine applicability of the uniform approximation, ityhich is a sink for minority carriers. The substrate is assumed
is necessary to estimate the location of the peak in the RCyq jnfinitely thick, although the analysis in the Appendix
density. This requires some knowledge of how the RC distilis, yreats finite thicknesses. The track radius is arbitrary
b_utlon was cregted. If ,'t is due to @splaqement damage frO(S'écause an integration in the lateral coordinates eliminates the
hlghly penetratmg pgrtlcles, ho estimate is needed becausetpa%k radius from the equations. The linear track density is
uplfqrm.approxmatmn. can be taken for granted, If_the R&ssumed to be uniform over the track length, so the track is
dlstrlputlon is dge to dlspla}cement damage from particles U'Edmpletely described by two parameters, which are the track
stop in the device, and if it can .be assumed that mqst of § gth and the linear density. Charge that reaches the upper
damage is at the end of the particle range, the stopping degt face via diffusion from the track is determined by the two

IS ?E estw:a}te iofnthe rlocatlin”ozvth-ei fp;ahak ('jn tf:ﬁ 'icwi?n; ':ﬁtrack parameters and by the substrate diffusion length function
€ conclusions are as Tollows. € depmh al CN MThich describes recombination losses in the substrate. The

RC density is greatest is less than 3/2 of the effective d|1"|‘u5|%Pff . L .
iffusion length function is assumed to be laterally uniform,

length, do not use the uniform approximation. This could bDeut may be highly nonuniform in the vertical coordinate due

(probably not, but possibly) a problem case in which tht% a nonuniform RC density
approximation fails badly. If this depth is greater than or The uniform approximatioﬁ estimates collected charge by
equal to 3/2 of the effective diffusion length, then the uniform . . ) . .

o assuming some appropriately selected effective (uniform) dif-
approximation is at least reasonably accurate. Errors betw$en

predicted and actual charge collected from a given track a glon length. The objective is to use diffusion theory to show

on the order of 20% or less, regardless of how uniform a3t this approximation can, sometimes, provi_de a reason-
RC density is and regardless of track length. Whether il ly gccgratg estimate, even when the.actual d|ffu5|'on Igngth
approximation is merely reasonably accurate or is excelleprCt'on is_highly nonuniform. The uniform approximation

for arbitrary track lengths depends on how uniform the R n obviously produce correct results if different effective
density is. However, even when the RC density varies 'gfusion lengths may be assumed for different ion tracks. The

much as can be seen by looking ahead to Fig. 6(a) (Whignjective is to show that reasonably accurate estimates can be

plots the reciprocal of the diffusion length against depth), tfPtained for any ion track when the same effective diffusion

accuracy is quite good, as shown in Fig. 6(b) (which comparéf!gth is assumed for all track lengths. L€X(z) denote

plots of a normalized collected charge versus track lengtifp!lected charge when the track lengthzisThe objective is
show that there is an effective diffusion length having the

RC density variations must be very extreme in order for tHe ) e H
uniform approximation to not be good. property that the uniform approximation produces a reasonably

It should be acknowledged that there may be a limitatigifcurate estimate @(z) for any » between zero ando. -
regarding longitudinal track structure. The analysis used to1N€ linear track density implicitly contained i@(z) is
derive the conclusions applies to a linear track density thigPerfluous when investigating the adequacy of the uniform
is uniform over a finite track length that begins at the topPProximation. It is convenient to define a normaliz€y
of the substrate and ends at some arbitrary depth. Howewhich is denoted/(z) and defined to b&)(z) divided by
a superposition of such tracks can simulate any nonunifoffe linear track density. Note thd(z) has the dimensions
linear density that does not increase with depth. Therefof¥, distance. The quantity(co) has a special significance
if the uniform approximation is accurate for uniform track®ecause it has two interpretations. The first interpretation is
starting at the top of the substrate and having arbitrary lengtfimediately implied by its definition; it is the normalized
then it is also accurate for nonuniform tracks if the linesgharge collected from an infinitely long track. Note that for
density does not increase with depth. The fact that the thedhg special case of a uniform diffusion length, the normal-
does not apply to tracks having a linear density that increadéed charge collected from an infinitely long track equals
with depth is a weakness of the present analysis becalize diffusion length. Therefore, the second interpretation of
variations in the track density will change quantitative resulté(cc) is an effective diffusion length. It is the value that
However, the conclusion, that the uniform approximation igust be assigned to the effective diffusion length in order
reasonably accurate except under some extreme conditidas,the uniform approximation to correctly predict collected
may still be valid even though the mathematical derivation eharge from an infinitely long track. In fact,(cc) is the
the conclusion is not. This is suggested by data presenteceffective diffusion length that will be used with the uniform
[3]. lons used for the charge collection measurements weapproximation in all discussions to follow. This choice for
alpha particles having an LET that increases with depth. Alse effective diffusion length ensures that the uniform approx-
discussed in more detail in Section V, the RC distribution isnation will be accurate whenever the track is sufficiently
expected to be very nonuniform, yet the uniform approximdeng. However, it is still not clear how long is “sufficiently
tion fit measured data very well. long,” or how good the approximation is when the track is
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not sufficiently long. These questions are answered in the —— T
following sections. 1ol o]
- I -
/
IV. UPPER AND LOWER BOUNDS I J/ PR
Becausel(o0) has a dual interpretation, it is sometimes a 0.8 i K .
convenient unit for measuring both the dependent variablg . L / '
and the independent variablg i.e., it is sometimes conve-  § r ) 1
nient to plot the dimensionless paramefée)/I(cc) against = 0.6 ! )
: . . LN p
the dimensionless parametefi(occ). The first parameter is o ,
interpreted as the charge collected from a track of length — S
divided by the charge collected from the infinitely long track, 0.4 ) . -=- upper bound
while the second is interpreted as the track length divided by Loy (no restrictions) -
the effectiv_e diffusion length. The uniform approximation is o2 i — uniform approx. |
expressed in terms of these dimensionless parametersas |/ .~ lower bound
II(Z)) =1—exp [—ﬁ} (uniform approximation (1) 00 (lslu?llef:t‘ tol (3)) .
It is shown in the Appendix that, no matter what the actual 0 ! 2 3 4 5
diffusion length function is, an upper bound for the actual z/1()
I(z)/I() is given by
5 Fig. 1. Plots of the uniform approximation, the upper bound (no restrictions),
A 1 _r if _r <9 and the lower bound [subject to (3)].
I(z) o ) I(oc) 4 |I(c0)]" I(0) = @
I{x) ~ 1 i % 9 between the uniform approximation and the lower bound is

I(0) not as good. If (3) is relaxed to include a larger class of
Unfortunately, there is no universal lower bound, except zer@ffusion length functions, the lower bound becomes lower and
To obtain a nontrivial lower bound, it is necessary to imposedgreement becomes worse. The uniform approximation fails
constraint that limits the diffusion length functions that may b@adly when the actual curve approximates the lower bound
considered. The type of constraint that is convenient from tgerresponding to a constraint that is more relaxed than (3).
point of view of the analysis is to stipulate that less than somelt is unfortunate that there are cases such that the uniform
specified fraction of collected charge may come from deptB@proximation does not work well. It can be shown that such
exceeding some specified multiple of the effective diffusiopases are produced when a very large number of RC’s are
length. For example, we might consider the diffusion lenggpnfined to a very narrow region that is very close to the upper
functions satisfying the constraint surface. However, the approximation is reasonably good under
Less than 10% of the charge collected from the all other cond!tlons. For example, if a very large .numb_er qf
o ] i RC’s are confined to a very narrow region, but this region is
infinitely long track is from depths exceeding at a depth of at least three halves of the effective diffusion
four times the effective diffusion length. (3)length, the actual curve will resemble the upper bound in
This constraint was arbitrarily selected only for illustrationtid. 1, which is fairly close to the uniform approximation. The
It will be seen shortly that the lower bound consistent witBPProximation becomes even better for the less extreme cases
this constraint does not even roughly agree with the unifort Which the RC density is spread out to the extent that the
approximation, illustrating that there are some problem casé&nsity does not vary by more than a factor of a few (e.g., five
(at least in theory if not in the real world) in which the unifornPr less). For these cases, the actual curve will look more like
approximation fails badly. It is shown in the Appendix that #he uniform approximation than either bound shown in Fig. 1.
lower bound for anyi (z)/I(oc) consistent with this constraint These statements are illustrated by numerical examples in the

is given by next section.
I 09 L, [—— <4 V. NUMERICAL EXAMPLES
I(0) = ) 0.9 if % >4 The statements at the end of the previous section can be
- I(c) = 7 illustrated by numerical examples. Selection of the examples

Plots of the right sides of (1), (2), and (4) are showis motivated by the experimental results presented in [3].
in Fig. 1. This paper calls a 20% error “reasonably goodThese results actually go beyond validating the applicability
so agreement between the upper bound and the unifodithe diffusion equation. They tend to validate the applica-
approximation is reasonably good. This implies that agreemdaility of the diffusion equation combined with the uniform
between the uniform approximation and any actual curve tregproximation because the uniform approximation was used
is above this approximation must also be reasonably godd,derive predictions that were found to fit measured data.
because any such curve is bracketed between the unifdieasurements of charge collected by epi SRAM’s from ion
approximation and the upper bound. However, agreemerdacks were compared to predictions that were calculated from
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the assumption that collected charge consists of the chaigeassumed to be the pre-irradiated value. The mathematical
liberated in the epi layer plus an additional contribution thdébrm of the diffusion length function, which was selected
diffuses to the epi from the heavily doped substrate belowtimarily on the basis of analytical tractability, is deferred
with the latter charge calculated from the diffusion equatiaio the Appendix because the qualitative characteristics shown
combined with the uniform approximation. Predictions fit than the figures discussed later are probably more relevant than
data very well for both virgin devices and devices that hadathematical expressions.
a greatly reduced diffusion length as a result of extensiveWe consider a sampling of all possible diffusion length
exposure to heavy ion irradiation. This irradiation was theinctions which are described by the equations in the Appen-
result of extensive and repeated latchup tests, resulting idia, have the asymptotic value of @m, and are consistent
very large accumulated fluence from very heavy ions. Theth I(cc) = 2 pm. The sampling will be worst case
test ions were 295 MeV Kr and 451 MeV Xe, both havingfrom the point of view of demonstrating adequacy of the
a range of just under 4pm in silicon. Nearly all tests were uniform approximation. This is accomplished by making the
done at large incident angles (because this was expected tdlyg width as narrow as possible (within limits stated below),
worst case for latchup) which varied between 60 and, 70to obtain the greatest possible nonuniformity consistent with
implying ion stopping depths between 14 and 2. All the stated conditions. Depending on the location of the blip
devices were found to have an overlayer thickness of abaanter, an arbitrarily narrow blip may be mathematically
4 ;;m. Different devices had different epi thicknesses, but tttmmpatible with the stated conditions if the blip amplitude is
device having a 5m epi is selected for illustration. The ioncorrespondingly large. This occurs when the blip is sufficiently
stopping depth was 5-11im below the bottom of the epi or close to the surface. When this is the case, the blip width is
top of the substrate. lon energies were strongly dependenttaken to be about Lim because this is sufficiently close to
depth for depths between the top of the substrate and stoppiimg mathematical limit (the blip approximates a Dirac delta
depth. It is therefore reasonable to assume that the induced feiction). However, if the blip center is sufficiently deep, it is
distribution in the substrate is confined to the upper 5zl no longer true that an arbitrarily narrow blip can satisfy the
and highly nonuniform within this region. condition that/(oc0) = 2 um. Some spread is required so that
Although [3] presents experimental validation of the unithe RC density extends to higher locations. When this is the
form approximation, it does not present any theoretical egase, the blip width is selected to be the smallest value such
planation as to why the uniform approximation should applyhat the condition can be satisfied. It can be shown that the
The excellent agreement may be somewhat surprising becatdemarcation between these cases occurs when the blip center
the actual diffusion length function is likely to be spatiallydepth is approximately twice the effective diffusion length
nonuniform as pointed out in the above paragraph; yet, fr 4 um for the examples to follow). The approximation is
each device considered, the same effective diffusion lengtbcurate when recombination from the RC’s outside and above
accurately predicts collected charge from any ion track, lorige blip can be neglected. The sampling will use am-blip
or short. The examples below were selected to provide thédth (approximately) if the blip center is at a depth less than
theoretical explanation, not given in [3], for the excellerd ;m and the minimum allowed blip width for larger depths.
agreement reported in [3]. The heavily irradiated devices Note that the shallow blips could be excluded on the basis
having reduced diffusion lengths are the most interestimng relevancy to the measured data, because a shallow and
because they are likely to have the greatest nonuniformity marrow blip could only be produced by damaging ions that
the RC density. stop near the top of the substrate. The damage in the parts
Charge collection measurements found the effective diffaensidered was produced by ions that stop deeper in the
sion length to be about 2m for the heavily irradiated devices.device. Excluding the narrow and shallow blips will give a
The virgin devices were found to have an effective diffusiomuch more favorable impression regarding the adequacy of the
length of about 1Qum. There was sufficient evidence that thisiniform approximation. However, such cases may be relevant
difference between diffusion lengths is not due to random patnder other circumstances, and it may be important to know
to-part variations, so it is assumed that the irradiated devidbat the uniform approximation does not always work well.
had a 10zm diffusion length prior to irradiation. Although Therefore, the sampling includes such cases even though they
there is some information regarding the RC distribution, ware not relevant to the measured data. As a reminder, the RC
will enlarge the number of cases considered by ignorirdjstributions assumed in the sampling are not intended to be
this information and consider a sampling of all possible R@hysically realistic; they are intended to be worst case in the
distributions satisfying the constraints that the post-irradiateénse of having the greatest possible nonuniformity allowed
effective diffusion length is 2:m and the pre-irradiated effec-by the constraints.
tive diffusion length is 1Qum. For each distribution selected The sampling is shown in Figs. 2—6. Each figure presents an
from the sampling, we compare the exdtt) for the selected assumed RC distribution, measured in terms of the reciprocal
distribution to the uniform approximation. The reciprocal 0bf the diffusion length function.p, and compares different
the diffusion length function, which is a measure of the R@redictions of the normalized collected charfieThe » in
density, is assumed to be a blip (possibly narrow or possihly;(z) is interpreted as depth, while then I(z) is interpreted
broad) representing a (possibly localized or possibly spreas track length. Eachl curve identified as “exact” was
out) RC distribution produced by irradiation damage. Thealculated from the exact equation describing the assumed
asymptotic (large depth) value of the diffusion length functioh , function.
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Fig. 3. The assumed.;, in (a) produces the exact in (b), which is
compared to the uniform approximation in (b).

Fig. 2. The assumed.;, in (a) produces the exadt in (b), which is
compared to the uniform approximation in (b).

The exact curve in Fig. 2 resembles the uniform approxit is still not very good in Fig. 3 but is reasonably good in
mation whenz is less than Jum because this places the traclFigs. 4 and 5. Note that the exact curve in Fig. 5 resembles
above the blip. However, the exact curve is approximatetfie upper bound in Fig. 1. The blip in Fig. 5 is as deep as
linear and far below the uniform approximation for larger it can be without increasing the blip width. It is impossible
In fact, the exact curve in Fig. 2 is even lower, at the largdor I(cc) to be as small as 2m unless the blip adds some
values ofz, than the lower bound shown in Fig. 1. This iRC’s to the region above the /#m depth. A blip deeper
because the exact curve in Fig. 2 violates the constraint (Ban 4 um implies that there must be some spread such as
that applies to the lower bound in Fig. 1. If the blip is movedhown in Fig. 6. Now that some spread is present, the uniform
higher than the }sm depth, the point where the exact curvapproximation becomes quite good. Although there is some
and uniform approximation diverge in Fig. 2 will move furthespread, the RC density is still very nonuniform. It is therefore
to the left, and the exact curve will approximate the lowaather impressive that the uniform approximation works so
bound corresponding to a constraint that is much more relaxedil.
than (3). Such small blip depths are the problem cases inif the trend started by Figs. 2—6 is continued beyond Fig. 6,
which the uniform approximation fails badly. However, théhe RC density becomes progressively more uniform and the
approximation becomes better as the blip is moved dowmiform approximation becomes progressively better. Even



36

Fig. 4. The assumed.p in (a) produces the exadt in (b), which is
compared to the uniform approximation in (b).
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Fig. 5. The assumed.;, in (a) produces the exact in (b), which is

compared to the uniform approximation in (b).

Fig. 6 probably did not carry the trend far enough to represemigion at a depth less than 3/2 of the effective diffusion
the actual test devices because the minimum ion stoppiR@gth, as illustrated in Figs. 2 and 3. However, when such
depth was Sum below the top of the substrate, and most ionsxtreme cases are excluded, charge collection is insensitive
stopped deeper. The uniform approximation is probably even spatial variations in the RC distribution (subject to the
more accurate for the RC distribution in the actual devicggportant qualification that all distributions being compared
than indicated in Fig. 6. This is the theoretical explanation fQf;;quce the same effective diffusion length), and the uniform
the excellent agreement empirically found and reported in [ pproximation ranges from reasonably good to excellent even

when the RC distribution is very nonuniform, as illustrated in

VI. CONCLUSIONS Figs. 4-6.

Accuracy of the uniform approximation was investigated The theory does not apply to charge collection from ion
for those cases in which the diffusion equation applies. tacks having an LET that increases with depth, and this is
was found that, at least for some hypothetical cases, tadimitation of the present work. However, experimental data
approximation does not always work well. It fails badlysuggest that the conclusion, that the uniform approximation
when a large number of RC’s are confined to a narroig reasonably accurate except under some extreme conditions,
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1.0 ey from

L “+o0 “+o0
QzﬁbLm[mfm@@@m@xzoamga

where P is the initial track density (charge per unit volume)
and{? is the charge-collection efficiency. The two coordinates
¢1 and ¢, are lateral coordinates, whil¢ is the longitudinal
coordinate. The charge collection efficiency is calculated by
solving the boundary value problem

ViQ=f?Q insubstrate, =1 on upper plane,
Q=0 on lower plane

1/1,(z) (pm™)

where f is the reciprocal of the diffusion length function. It is
assumed thaf depends only on the longitudinal coordinate,
so{2 depends only on the longitudinal coordinate. Suppressing
the superfluous coordinates, the equation{tobecomes

0.0 PR [N SN ARO[ SR [T SN SN TR SN FURDY SUUOY TN S TR Y

o 1 2 3 :fa) 5 6 7 8 9 10 degzgoIfQ(C)Q(C)f0f0<C<L, A0 =1,

QL) =o0. (A1)

2.0

Integrating the equation for) with respect to the lateral
coordinates gives

F L
15 b QzA p(Q) Q(C) d¢
wherep is the linear track density (charge per unit length). We
consider the case where this density is uniform over a track
length » < L so thatp is a step function. It is zero when

¢ > z, and constant wheg < z. Dividing @ by this constant
produces! which is calculated from

1.0

I(z) (um)

0.5 |- -~ - exact ] 1(2) :/OZ Q(¢) dC. (A2)

—— uniform approximation ]

B. An Upper Bound

ool v e When f is specified and? is known from (Al),I(z) can
c 1 2 3 4 5 6 7 8 9 10 be calculated from (A2). However, the present objective is to
obtain a bound for the ratid(z)/I(L) which can be derived
z (pm) when f is not specified and? is not known. Such a bound
(b) can be obtained by replacing the unknofron the right side
Fig. 6. The assumed in (a) produces the exadt in (b), which is Of (A2) with an expression that still contains the unknogn
compared to the uniform approximation in (b). but has some properties ©f built into it so that information
can be extracted without requiring th@tbe solved. Such an
may still be valid even when the mathematical derivation %xpregsion can bef obtained t,’y converting (A_l) into an i”tegfa'
not. equation. Integrating (Al) twice and then using an integration
by parts to change the appearance of the result gives

L
APPENDIX LO(z)=L—-z- / G(z, O)f*(O) Q) d¢ (A3)
MATHEMATICAL ANALYSIS 0
where the Green’s functiof¥¥ is given by

A. An Expression foi(z) (L —2)¢, fo<(<z<L
- el infi Gz Q) = (L-—¢)z f0<z<(<L
We eventually consider substrates that are effectively infin- “) =~ =5 =4

itely thick, but it is convenient to start with a finite thickness  Substituting (A3) into (A2) and changing the order of inte-
and take a limit later. The substrate is imagined to lie betwegpation gives
two infinite planes which are both sinks for minority carriers.

L
It was shown [11] that the amount of char@ereaching the LI(z) = (L - 2/2)z _/ H(z, OW2(¢)d¢ (Ad)
upper plane via diffusion from an ion track can be calculated 0
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where H and ¥ are defined by

_ @)L -¢), if0<2<(<L .
He o= {25l aEiEE <\,
W) = (F(ORAQ) (A5) AN
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Note that (Al) implies thaf} is not negative anywhere, so N
U2 is not negative anywhere. Another property Bf can
be derived by first differentiating (A3) and evaluating the
derivative atz = L to get

H(z,£)

dQ(z)

L
dz

= /OL W) d¢ — 1. (AB) N

z=L

Note thatQ(L) = 0 and {2 is not negative anywhere, <@ N N
cannot be increasing in any neighborhood of the peiat L.
Therefore, the derivative on the left side of (A6) cannot be
positive. Combining this observation with (A6) gives

Fig. 7. lllustration of the curvature df(z, () when plotted agains{ with

z fixed. TheH curve (solid) is bounded above by the chord connecting the
end points (upper dashed line) and bounded below by any tangent line, such
. L . . . as the lower dashed line shown.

Another equation containingi? is obtained by evaluating (A4)

at z = L while using (A5) to get

/ Cwac<t (A7)
0

When the above inequality does not apply, we still have
I(z) < I(L), so the bound can be expressed as

/0 (L-QW(Q)d =L—2I(L). (A8

An important property of (z, ), implied by (A5), is the

type of curvature that it has when plotted agaigstvith » (A11)
fixed. When¢ € (0, z), H is linear in¢. When¢ € (z, L), H I(L) 1, TR
has the curvature illustrated in Fig. 7. TEEcurve is convex I(L) ~

when viewed from the left, so it is bounded below by any

tangent line, such as illustrated by the lower dashed line inThe upper bound given by (A11) is the smallest upper bound
the figure (the upper dashed line is needed in Section VII-Ghat applies when no restrictions are imposed on the function
Selecting any tangent line, which is tangent to fiieurve at . This can be demonstrated by showing that the bound is
¢ =anyA € [z L], we have the bound approached by a limiting case. To demonstrate this, first note
that the left side of (A8) is not negative, 86(L) < L (it can
be seen from (Al) and (A2) that the equality applies when
f = 0 everywhere). The limiting case occurs whgf(() is
a Dirac delta function centered gt = 2/(L) and with an
. . infinite coefficient selected so that a plot §f¢) [satisfying
vyhlch_applles to _anx € [0, .L] and anyA € [Z_’ L]. The (Al)] is a straight line connecting the poift, 2) = (0, 1)
right side of (A9) is the equation of the tangent line, regardqg the point[2/(L), 0], and with 2 (¢) = 0 for ¢ > 2I(L).

as a function of¢ with z fixed. Multiplying (A9) by ¥2 and A direct luati () f A2) using thisQ prod
integrating and then using (A4), (A7), and (A8) to substitut&e I;%chtes\/izéja:);o&il)(z) rom (A2) using this(2 produces

72

H(z, ()2 5 [UL =) = (L= 47 ifCelo, 1]

and A € [z, L] (A9)

for the integrals gives

I(L) _1} if z€ [0, L]and A € [z, L]

2
Iz)<z+=z [ Tz "
(A10)
which applies for anyd € [z, L]. In particular, (A10) applies
when A = z, and we obtain the obvious resuifz) < I(L).
A stronger statement can be made wher 2I(L) because
we can then letA = 2I(L) and (A10) becomes

if z<2I(L).

The largeL limit shown as (2) in Section IV is obtained by
simply replacing. with oo in (A1l).

C. A Lower Bound

The curvature ofH discussed in Section VII-B and il-
lustrated in Fig. 7 implies thal{ is bounded by the chord
connecting the end points (the upper dashed line in Fig. 7).
This gives the inequality

LH(z, () <z(L—2/2)(L-¢) forall z €0, L]
and all¢ € [0, L].
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Multiplying this inequality byW2, integrating, and then usinglt is convenient to expres& as some multipley of I(L).

(A4) and (A8) to substitute for the integrals gives Using this notation, the bounds are expressed as
1—a) =z . 2
1(z) z z72 ( — if — <~
>22 |2 2 ) ’ =
) > 2 I [L} for all z € [0, L] (A12) —_;(Z) > v I(L) I(f) (AL5)
L)~ 1 -w), it -7 >

The lower bound given by (A12) is the smallest lower bound (L)~
that applies when no restrictions are imposed on the functigiich provides a nontrivial result in the largelimit.
J. This can be demonstrated by showing that the bound isps an example, suppose the set of possible diffusion length
approached by a limiting case. Such a case occurs WHE)  functions, that the bound is to apply to, is restricted by the
is a Dirac delta function centered gt= 0%, and with a constraint that less than 10% of the charge collected from the
coefficient selected so that a plot 6X¢) [satisfying (A1)] jnfinitely long track is from depths exceeding four times the
first connects the poinf¢, ©2) = (0, 1) to the point D™,  effective diffusion length. We then let = 0o, o = 0.1, v =

2I(L)/L], and then becomes a straight line connecting the and (A15) becomes (4) in Section IV.
point [0, 21(L)/L] to the point {,0). A direct evaluation of
I(z) from (A2) using this2 produces the right side of (A12). 5
Note that the upper bound in (A11) and the lower bound’ ] . . .
in (A12) come together when the ratio/I(L) is close to the The numencgl examples in Section V were obtained by
smallest allowed value (which is two). This could have beeiP!Ving (A1) with f selected to represent some cases of
anticipated from the fact that there is only one possjbieero) interest. The eas_|est way to solve_ this problem_ls backward.
which can makeI(L) = L, so €2 is completely determined Instead of selecting afi representing a case of interest and
in this limit. Unfortunately, our concern is with the oppositétempting to solve (A1) fof}, it is easier to select aft and
extreme of a largel,/I(L). ReplacingL with oc in (A12) US€ (A1) to find out whaf is. This is a trial and error method.
produces a lower bound of zero. To obtain a nontrivial lowdf the f produced by a selected does not approximate the

bound, it is necessary to impose some constraint that restritt@ction that we would like it to be, it is necessary to try

Calculations Used for the Examples

the set of functions from whiclf may be selected. again with anothef}. The 2 used for the numerical examples
The type of constraint that is convenient for analysis #§ 9iven by

obtained by selecting some depth € (0, L) and some 20— 2

fractiona € (0, 1) and stipulate that the fractional contribution €2(z) = B exp(—kz) + AW In [1 + exp < W )} (A16)

to (L), from charge collected from a depth exceediigis
not larger thany, i.e., wherek, A, W, and z are constants satisfying

[I(L) — I(2))/I(L) < w. (A13) k>0, 0< W <1/k, A>0, 20 >0
AW In[l + exp(zo/W)] < 1

A b_ound consistent with (A13) can be derived l_)y_f|rst eVakut are otherwise arbitrary. The constagtis not arbitrary.
uating (A4) atz = Z and then use (A13) to eliminate theIt is calculated from

I(Z) to get
. B =1— AW In[1 + exp(zo/W)].
2
/0 H(Z, QUHQd¢ < (L=2/2)Z-L(1-a)I(L). (A14) The reciprocal of the diffusion length function used in the
examples isf calculated from (Al) and (A16). The result

If = > Z, we have the obvious boundi(z) > I(Z) > is a blip, illustrated in the figures in Section V, which has
(1 - c_x)I(L). We now consider the case where < Z. an asymptotic value equal th. The blip center depth is
Three possibilities to consider ae € [0, 2], ¢ € [z, Z], approximatelyz, when the blip is narrow. The relationship

and ¢ € [Z, L]. It can be shown from (A5) that all threebetween blip depth ang, is more obscure with wider blips,

possibilities result in but the depth increases wheg increases. The blip width
is most strongly influenced by¥ and increases whel/
(L —2/2)z increases. The blip amplitude is most strongly influenced by
H(z () < (L=Z/2)Z H(Z, () A and increases wheH increases.

The normalized chargé(z) is calculated from (A2) and
(Al16). To evaluate the integral in (A2), it is necessary to

with the equality applying whed = 0. Multiplying the above Gevaluate the integra$’ defined by

inequality by ¥? and integrating and then using (A4) an
(A14) to substitute for the integrals gives X
S(X) = / In[1 + exp(—£)] dt.
() > (L—2/2)z 0
= (L-2Z]2)Z Special values are given h§(0) = 0 and S(cc) = 72/12.
if0<z2<Z. The argumentX can have either sign. Whel > 0, S can

(1= )I(L) 2 (2/Z)(1 - a)I(L),
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be evaluated from the series

7I'2 o —1ym-1 ]
S(X) = - Z % exp(—mX) if X >0.
m=1

The series converges very slowly whén =~ 0, although

(2]
(3]

(4]

convergence is faster for largef. Calculations used for the [5
examples approximated the series with the first 100 terms for

all X > 0. Truncation errors are reduced by adding the term

in reverse order. The series divergesXf < 0. This case

ol

can be treated by first converting the argument to a positive

number using the identity
S(X)=-8(-X)-X?/2

and then using the series to evaluate the term containing the

positive argument.
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